Fire Resistance of Reinforced Concrete Structures

Eight Alexandria International Conference on Structural and Geotechnical Engineering April 14, 2014

Maged A. Youssef, P.Eng. Associate Professor Associate Chair for Undergraduate Affairs E-mail: <u>youssef@uwo.ca</u> Western UNIVERSITY · CANADA

18 78

Fire Safety

- Annual fire occurrence in highrise buildings exceeds 10,000 incidents in US.
- Fire Safety:
 - Automatic fire sprinklers
 - Systems for fire detection
 - Safe travel (Egress) paths
 - Barriers to control the fire spread, and
 - Fire-resistant structures

Western SEngineering

Outline

- Fire Modeling.
- Design for Fire.
- Constitutive Models at Elevated Temperatures
- Analysis Tools
- Simplified Analysis
- Design Tools for Flexural and Shear

ompressive Strength Her	(0005)	
	tz (2005)	A, L
Iodulus of Elasticity And	lerberg (1976)	A, L
ransient Creep Strain Ter	ro (1998)	A, L, V _A
Strain at Peak Stress Ter	ro (1998)	L
ensile Strength Ter	ro (1998)	A
Free thermal strain Eur	ocode (1992)	A

Design for Fire

- Prescriptive Methods:
 - Simple and empirical but limited in applicability.
- Performance Based Design (PBD) evaluates the performance of the structure under realistic fire loads. It has many advantages:
 - allow engineers to achieve innovative solutions.
 - cost-effectiveness and flexibility in design
 - harmonization between regulations/codes
 - changes in construction technology

Western S Engineering

Potential Methods to Achieve PBD

- Fire Tests (costly, limits).
- Nonlinear Finite Element Analysis (can be accurate, computationally expensive and complex)

Simplified Tools for PBD of Structures Exposed to Fire

- Flexural Analysis of RC Beams Exposed to Fire.
- Stress-Block Parameters of RC Beams Exposed to Fire.
- Interaction Diagrams of RC Columns Exposed to Fire.
- Analysis of RC Frames Exposed to Fire.
- Shear Capacity of RC Beams Exposed to Fire.

Sectional Analysis at Elevated Temperatures

- Thermal Strains.
- Transient Creep Strains.
- Temperature Distribution.
- Temperature-dependent material properties.

Axial Capacity of Fire-Exposed RC Columns

- 1. The heated section is divided into variable and constant temperature regions.
- 2. Average temperatures are evaluated.
- 3. The failure strain for the section is identified.
- 4. The average concrete stresses are predicted.
- 5. The axial capacity is evaluated.

Shear Capacity of Fire-Exposed RC Sections

- For additional details, please refer to:
- <u>El-Fitiany SF</u>, **Youssef MA**, in-press, "Interaction Diagrams for Fire-Exposed Reinforced Concrete Sections", *Engineering Structures*, accepted March 2014.
- <u>El-Fitiany S.F.</u>, Youssef M.A., 2014, "Simplified Method to Analyze Continuous Reinforced Concrete Beams during Fire Exposure", *ACI Structural Journal*, Vol. 111, No. 1, pp. 145-155.
- <u>El-Fitiany S.F.</u>, Youssef M.A., 2011, "Stress-Block Parameters for Reinforced Concrete Beams during Fire Events", *ACI SP-279: Innovations in Fire Design of Concrete Structures*, ACI-TMS Committee 216: Fire Resistance and Fire Protection of Structures, Paper No. 1, pp. 1-39.
- <u>El-Fitiany S.F.</u>, Youssef M.A., 2009, "Assessing the Flexural and Axial Behaviour of Reinforced Concrete Members at Elevated Temperatures using Sectional Analysis", *Fire Safety Journal*, Vol. 44, No. 5, pp. 691-703.
- Youssef M.A., <u>EI-Fitiany S.F., Elfeki M.</u>, 2008, "Flexural Behavior of Protected Concrete Slabs after Fire Exposure", *ACI SP-255: Designing Concrete Structures for Fire Safety*, ACI-TMS Committee 216: Fire Resistance and Fire Protection of Structures, Paper No. 3, pp. 47-74.
- Youssef M.A. and <u>Moftah M.</u>, 2007, "General Stress-Strain Relationship for Concrete at Elevated Temperatures", *Engineering Structures*, Vol. 29, No. 10, pp. 2618-2634.

